Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lancet Planet Health ; 8(4): e225-e233, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580424

RESUMO

BACKGROUND: Higher temperatures are associated with higher rates of hospital admissions for nephrolithiasis and acute kidney injury. Occupational heat stress is also a risk factor for kidney dysfunction in resource-poor settings. It is unclear whether ambient heat exposure is associated with loss of kidney function in patients with established chronic kidney disease. We assessed the association between heat index and change in estimated glomerular filtration rate (eGFR) in participants from the DAPA-CKD trial in a post-hoc analysis. METHODS: DAPA-CKD was a randomised controlled trial of oral dapagliflozin 10 mg once daily or placebo that enrolled participants aged 18 years or older, with or without type 2 diabetes, with a urinary albumin-to-creatinine ratio of 200-5000 mg/g, and an eGFR of 25-75 mL/min per 1·73 m2. In this post-hoc analysis, we explored the association between time-varying daily centre-level heat index (ERA5 dataset) and individual-level change in eGFR in trial participants using linear mixed effect models and case-time series. The DAPA-CKD trial is registered with ClinicalTrials.gov, NCT03036150. FINDINGS: Climate and eGFR data were available for 4017 (93·3%) of 4304 participants in 21 countries (mean age: 61·9 years; mean eGFR: 43·3 mL per 1·73 m2; median 28 months follow-up). Across centres, a heat index of more than 30°C occurred on a median of 0·6% of days. In adjusted linear mixed effect models, within each 120-day window, each 30 days' heat index of more than 30°C was associated with a -0·6% (95% CI -0·9% to -0·3%) change in eGFR. Similar estimates were obtained using case-time series. Additional analyses over longer time-windows showed associations consistent with haemodynamic or seasonal variability, or both, but overall estimates corresponded to an additional 3·7 mL per 1·73 m2 (95% CI 0·1 to 7·0) loss of eGFR per year in a patient with an eGFR of 45 mL per 1·73 m2 located in a very hot versus a temperate environment. INTERPRETATION: Higher ambient heat exposure is associated with more rapid eGFR decline in those with established chronic kidney disease. Efforts to mitigate heat exposure should be tested as part of strategies to attenuate chronic kidney disease progression. FUNDING: None.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Humanos , Pessoa de Meia-Idade , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Taxa de Filtração Glomerular , Fatores de Risco , Rim
2.
Environ Res Lett ; 19(3): 031004, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38476251

RESUMO

Climate change could lead to high economic burden for individuals (i.e. low income and high prices). While economic conditions are important determinants of climate change vulnerability, environmental epidemiological studies focus primarily on the direct impact of temperature on morbidity and mortality without accounting for climate-induced impacts on the economy. More integrated approaches are needed to provide comprehensive assessments of climate-induced direct and indirect impacts on health. This paper provides some perspectives on how epidemiological and economic impact assessments could be better integrated. We argue that accounting for the economic repercussions of climate change on people's health and, vice versa, the consequences of health effects on the economy could provide more realistic scenario projections and could be more useful for adaptation policy.

3.
Lancet Planet Health ; 8(2): e86-e94, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331534

RESUMO

BACKGROUND: Climate change can directly impact temperature-related excess deaths and might subsequently change the seasonal variation in mortality. In this study, we aimed to provide a systematic and comprehensive assessment of potential future changes in the seasonal variation, or seasonality, of mortality across different climate zones. METHODS: In this modelling study, we collected daily time series of mean temperature and mortality (all causes or non-external causes only) via the Multi-Country Multi-City Collaborative (MCC) Research Network. These data were collected during overlapping periods, spanning from Jan 1, 1969 to Dec 31, 2020. We projected daily mortality from Jan 1, 2000 to Dec 31, 2099, under four climate change scenarios corresponding to increasing emissions (Shared Socioeconomic Pathways [SSP] scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). We compared the seasonality in projected mortality between decades by its shape, timings (the day-of-year) of minimum (trough) and maximum (peak) mortality, and sizes (peak-to-trough ratio and attributable fraction). Attributable fraction was used to measure the burden of seasonality of mortality. The results were summarised by climate zones. FINDINGS: The MCC dataset included 126 809 537 deaths from 707 locations within 43 countries or areas. After excluding the only two polar locations (both high-altitude locations in Peru) from climatic zone assessments, we analysed 126 766 164 deaths in 705 locations aggregated in four climate zones (tropical, arid, temperate, and continental). From the 2000s to the 2090s, our projections showed an increase in mortality during the warm seasons and a decrease in mortality during the cold seasons, albeit with mortality remaining high during the cold seasons, under all four SSP scenarios in the arid, temperate, and continental zones. The magnitude of this changing pattern was more pronounced under the high-emission scenarios (SSP3-7.0 and SSP5-8.5), substantially altering the shape of seasonality of mortality and, under the highest emission scenario (SSP5-8.5), shifting the mortality peak from cold seasons to warm seasons in arid, temperate, and continental zones, and increasing the size of seasonality in all zones except the arid zone by the end of the century. In the 2090s compared with the 2000s, the change in peak-to-trough ratio (relative scale) ranged from 0·96 to 1·11, and the change in attributable fraction ranged from 0·002% to 0·06% under the SSP5-8.5 (highest emission) scenario. INTERPRETATION: A warming climate can substantially change the seasonality of mortality in the future. Our projections suggest that health-care systems should consider preparing for a potentially increased demand during warm seasons and sustained high demand during cold seasons, particularly in regions characterised by arid, temperate, and continental climates. FUNDING: The Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency, provided by the Ministry of the Environment of Japan.


Assuntos
Mudança Climática , Temperatura Baixa , Temperatura , Estações do Ano , Estudos Prospectivos
4.
Nat Commun ; 15(1): 1796, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413648

RESUMO

Older adults are generally amongst the most vulnerable to heat and cold. While temperature-related health impacts are projected to increase with global warming, the influence of population aging on these trends remains unclear. Here we show that at 1.5 °C, 2 °C, and 3 °C of global warming, heat-related mortality in 800 locations across 50 countries/areas will increase by 0.5%, 1.0%, and 2.5%, respectively; among which 1 in 5 to 1 in 4 heat-related deaths can be attributed to population aging. Despite a projected decrease in cold-related mortality due to progressive warming alone, population aging will mostly counteract this trend, leading to a net increase in cold-related mortality by 0.1%-0.4% at 1.5-3 °C global warming. Our findings indicate that population aging constitutes a crucial driver for future heat- and cold-related deaths, with increasing mortality burden for both heat and cold due to the aging population.


Assuntos
Mudança Climática , Aquecimento Global , Temperatura , Temperatura Baixa , Temperatura Alta , Mortalidade
5.
Environ Health (Wash) ; 2(2): 95-104, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38384398

RESUMO

Climate change interacts with other environmental stressors and vulnerability factors. Some places and, owing to socioeconomic conditions, some people, are far more at risk. The data behind current assessments of the environment-wellbeing nexus is coarse and regionally aggregated, when considering multiple regions/groups; or, when granular, comes from ad hoc samples with few variables. To assess the impacts of climate change, we require data that are granular and comprehensive, both in the variables and population studied. We build a publicly accessible data set, the SHARE-ENV data set, which fulfills these criteria. We expand on EU representative, individual-level, longitudinal data (the SHARE survey), with environmental exposure information about temperature, radiation, precipitation, pollution, and flood events. We illustrate through four simplified multilevel linear regressions, cross-sectional and longitudinal, how full-fledged studies can use SHARE-ENV to contribute to the literature. Such studies would help assess climate impacts and estimate the effectiveness and fairness of several climate adaptation policies. Other surveys can be expanded with environmental information to unlock different research avenues.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38191925

RESUMO

Recent developments in linkage procedures and exposure modelling offer great prospects for cohort analyses on the health risks of environmental factors. However, assigning individual-level exposures to large population-based cohorts poses methodological and practical problems. In this contribution, we illustrate a linkage framework to reconstruct environmental exposures for individual-level epidemiological analyses, discussing methodological and practical issues such as residential mobility and privacy concerns. The framework outlined here requires the availability of individual residential histories with related time periods, as well as high-resolution spatio-temporal maps of environmental exposures. The linkage process is carried out in three steps: (1) spatial alignment of the exposure maps and residential locations to extract address-specific exposure series; (2) reconstruction of individual-level exposure histories accounting for residential changes during the follow-up; (3) flexible definition of exposure summaries consistent with alternative research questions and epidemiological designs. The procedure is exemplified by the linkage and processing of daily averages of air pollution for the UK Biobank cohort using gridded spatio-temporal maps across Great Britain. This results in the extraction of exposure summaries suitable for epidemiological analyses of both short and long-term risk associations and, in general, for the investigation of temporal dependencies. The linkage framework presented here is generally applicable to multiple environmental stressors and can be extended beyond the reconstruction of residential exposures. IMPACT: This contribution describes a linkage framework to assign individual-level environmental exposures to population-based cohorts using high-resolution spatio-temporal exposure. The framework can be used to address current limitations of exposure assessment for the analysis of health risks associated with environmental stressors. The linkage of detailed exposure information at the individual level offers the opportunity to define flexible exposure summaries tailored to specific study designs and research questions. The application of the framework is exemplified by the linkage of fine particulate matter (PM2.5) exposures to the UK Biobank cohort.

7.
Int J Climatol ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37874919

RESUMO

Combined heat and humidity is frequently described as the main driver of human heat-related mortality, more so than dry-bulb temperature alone. While based on physiological thinking, this assumption has not been robustly supported by epidemiological evidence. By performing the first systematic comparison of eight heat stress metrics (i.e., temperature combined with humidity and other climate variables) with warm-season mortality, in 604 locations over 39 countries, we find that the optimal metric for modelling mortality varies from country to country. Temperature metrics with no or little humidity modification associates best with mortality in ~40% of the studied countries. Apparent temperature (combined temperature, humidity and wind speed) dominates in another 40% of countries. There is no obvious climate grouping in these results. We recommend, where possible, that researchers use the optimal metric for each country. However, dry-bulb temperature performs similarly to humidity-based heat stress metrics in estimating heat-related mortality in present-day climate.

8.
Environ Res Lett ; 18(6): 061005-61005, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366531

RESUMO

Climate change can substantially affect temperature-related mortality and morbidity, especially under high green-house gas emission pathways. Achieving the Paris Agreement goals require not only drastic reductions in fossil fuel-based emissions but also land-use and land-cover changes (LULCC), such as reforestation and afforestation. LULCC has been mainly analysed in the context of land-based mitigation and food security. However, growing scientific evidence shows that LULCC can also substantially alter climate through biogeophysical effects. Little is known about the consequential impacts on human health. LULCC-related impact research should broaden its scope by including the human health impacts. LULCC are relevant to several global agendas (i.e. Sustainable Development Goals). Thus, collaboration across research communities and stronger stakeholder engagement are required to address this knowledge gap.

9.
NPJ Clim Atmos Sci ; 6(1)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37252185

RESUMO

Heatwaves are one of the leading causes of climate-induced mortality. Using the examples of recent heatwaves in Europe, the United States and Asia, we illustrate how the communication of dangerous conditions based on temperature maps alone can lead to insufficient societal perception of health risks. Comparison of maximum daily values of temperature with physiological heat stress indices accounting for impacts of both temperature and humidity, illustrates substantial differences in geographical extent and timing of their respective peak values during these recent events. This signals the need to revisit how meteorological heatwaves and their expected impacts are communicated. Close collaboration between climate and medical communities is needed to select the best heat stress indicators, establish them operationally, and introduce them to the public. npj Climate and Atmospheric Science (2023) 6:33.

10.
Nat Commun ; 13(1): 4964, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002456

RESUMO

Climate adaptation actions can be energy-intensive, but how adaptation feeds back into the energy system and the environment is absent in nearly all up-to-date energy scenarios. Here we quantify the impacts of adaptation actions entailing direct changes in final energy use on energy investments and costs, greenhouse gas emissions, and air pollution. We find that energy needs for adaptation increase considerably over time and with warming. The resulting addition in capacity for power generation leads to higher greenhouse gas emissions, local air pollutants, and energy system costs. In the short to medium term, much of the added capacity for power generation is fossil-fuel based. We show that mitigation pathways accounting for the adaptation-energy feedback would require a higher global carbon price, between 5% and 30% higher. Because of the benefits in terms of reduced adaptation needs, energy system costs in ambitious mitigation scenarios would be lower than previous estimates, and they would turn negative in well-below-2-degree scenarios, pointing at net gains in terms of power system costs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gases de Efeito Estufa , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Mudança Climática , Combustíveis Fósseis
11.
Lancet Planet Health ; 6(7): e557-e564, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35809585

RESUMO

BACKGROUND: Epidemiological literature on the health risks associated with non-optimal temperature has mostly reported average estimates across large areas or specific population groups. However, the heterogeneous distribution of drivers of vulnerability can result in local differences in health risks associated with heat and cold. We aimed to analyse the association between ambient air temperature and all-cause mortality across England and Wales and characterise small scale patterns in temperature-related mortality risks and impacts. METHODS: We performed a country-wide small-area analysis using data on all-cause mortality and air temperature for 34 753 lower super output areas (LSOAs) within 348 local authority districts (LADs) across England and Wales between Jan 1, 2000, and Dec 31, 2019. We first performed a case time series analysis of LSOA-specific and age-specific mortality series matched with 1 × 1 km gridded temperature data using distributed lag non-linear models, and then a repeated-measure multivariate meta-regression to pool LAD-specific estimates using area-level climatological, socioeconomic, and topographical predictors. FINDINGS: The final analysis included 10 716 879 deaths from all causes. The small-area assessment estimated that each year in England and Wales, there was on average 791 excess deaths (empirical 95% CI 611-957) attributable to heat and 60 573 (55 796-65 145) attributable to cold, corresponding to standardised excess mortality rates of 1·57 deaths (empirical 95% CI 1·21-1·90) per 100 000 person-years for heat and 122·34 deaths (112·90-131·52) per 100 000 person-years for cold. The risks increased with age and were highly heterogeneous geographically, with the minimum mortality temperature ranging from 14·9°C to 22·6°C. Heat-related mortality was higher in urban areas, whereas cold-related mortality showed a more nuanced geographical pattern and increased risk in areas with greater socioeconomic deprivation. INTERPRETATION: This study provides a comprehensive assessment of excess mortality related to non-optimal outdoor temperature, with several risk indicators reported by age and multiple geographical levels. The analysis provides detailed risk maps that are useful for designing effective public health and climate policies at both local and national levels. FUNDING: Medical Research Council, Natural Environment Research Council, EU Horizon 2020 Programme, National Institute of Health Research.


Assuntos
Temperatura Baixa , Humanos , Fatores de Risco , Temperatura , Fatores de Tempo , País de Gales/epidemiologia
13.
Sci Rep ; 12(1): 5178, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338191

RESUMO

Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.


Assuntos
Clima , Tempo (Meteorologia) , Temperatura Alta , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA